
Fermi National Accelerator Laboratory

CMU-HEP90-13

FNAL-PUB-90/147-A

July, 1990

False-Vacuum Decay in Generalized Extended Inflation

Richaxd Holman, 1 Edward W. Kolb, a Sharon L. Vadas, z Yun Wang, 1

1Physics Department, Carnegie Mellon University, Pittsburgh PA 15_13

=NASA /Fermilab Astrophysics Center

Fermi National Accelerator Laboratory, Batavia, IL 60510
and

Department of Astronomy and Astrophysics and Enrico Fermi Institute

The University of Chicago, Chicago, IL 60637

ZPhysics Department, The University of Chicago, 11 60637

Abstract

We study false-vacuum decay in context of generalized extended inflationaxy

theories, and compute the bubble nucleation rates for these theories in the

limit of GN ---* O. We find that the time dependence of the nucleation rate can

be ezponentially strong through the time dependence of the Jordan-Brans-

Dicke field. This can have a pronounced effect on whether extended inflation

can be successfutly implemented.
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Extended inflation [1], one of the more interesting variants of a class of inflationary

models, may be the key to solving the various problems faced by the standard cosmology.

Extended inflation has revived the basic idea of old inflation [2], namely that inflation

is induced by a field configuration trapped in a metastable state from which it exits via

nucleation of bubbles of true vacuum. The original framework for extended inflation was

the Jordan-Brans-Dicke theory [3] and involved two scalar fields, the inflaton and the

Jordan-Brans-Dicke field. La and Steinhardt showed that in such a theory the expansion

of the Universe is power law (rather than exponential) while dominated by the inflaton

false-vacuum energy. This implies that the true vacuum phase could percolate, and thus

the graceful exit problem of old inflation [4] could be evaded [1].

Unfortunately, in the La-Steinhardt model the requirements that the bubble-wall

energy be thermalized before any cosmologically sensitive times (such as nucleosynthesis

or recombination) and that a global Robertson-Walker frame be reestablished in the

bubble cluster, resulted in a physically unacceptable upper bound on the Brans-Dicke

parameter w [5]. Weinberg showed that this upper bound is of order 20 [5], while the

experimental lower bound is w > 500 [6]! Thus, if one wishes to make use of extended

inflation, ways of avoiding this unpleasant problem must be found.

More sophisticated models have been considered, such as those which fix the present

value of the Jordan-Brans-Dicke scalar field [7], as well as theories in which the inflaton

couples to gravity with a different strength than normal matter [8]. Extended inflation

models within the framework of Kaluza-Klein theories [9] have also been examined [10],

as have the effects of higher order curvature terms on extended inflation [11], and the

effect of a generalization of the coupling of the Jordan-Brans-Dicke scalar field to the

curvature scalar [12].

The crux of the graceful exit problem concerns the so-called percolation parameter

e - _/H 4, where _ is the bubble nucleation rate per physical three-volume and H is



the Hubble parameter during inflation. The quantity _ is a measure of the number of

true-vacuum bubbles nucleated within a Hubble volume i/-3 in a Hubble time H -1. The

graceful exit problem in old inflation is essentially the following: In order for enough

inflation to be achieved we must have c _ 4 × 10 -3 [4], while in order for the true vacuum

phase to percolate, we must demand that _ _ ccR, with 10 -6 _ ecR _ 0.24. Now,

both A and H are constant during inflation in the old inflationary scenario. Since A is

exponentially small in general, extreme fine-tuning would be required in order to satisfy

both constraints (if it could be done at all!).

In the model of La and Steinhardt, the fact that the super-luminal expansion is a

power-law makes H(t) time dependent, while A remains time-independent (despite the

time evolution of the Jordan-Brans-Dicke (JBD) field _ [13]). This in turn allows e to

increase in time so that it can start small enough to allow for sufficient inflation, and

then grow to be large enough that c > ecR so that percolation occurs.

Previously [13], we showed that the original model of extended inflation with a vari-

able gravitational coupling can be recast by a conformal transformation as a theory with

a "constant" Newton's constant, but at t_e cost of introducing a complicated coupling

between the inflaton field and the Jordan-Brans-Dicke scalar field. Although the tech-

nique of the conformal transformation has been employed before in order to analyze

inflationary models with varying gravitational constant [14], it had not been appreciated

previously that the nucleation rate will have a different time dependence in the new

conformal frame than it had in the original frame.

The fact that extended inflation can be viewed in a conformal frame where grav-

ity is "normal" suggests that the physical justification for extended inflation may arise

from modification of the scalar sector of particle physics rather than modification of the

fundamental gravitational interaction. 1 In fact, the possibility that the evolution of a

1of course in many cases it is pouible to perform a conformal transformation and express the theory
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scalar field can induce a first-order phase transition in another scalar field was realized

by Kofman and Linde [15]. In their model the effective mass of the field involved in the

phase transition was slowly changed by the evolution of some other field.

For the moment, consider a theory in the conformal frame with a constant coefficient

of the Ricci scalar. All extended inflation models to date can be expressed in terms of two

degrees of freedom; an inflaton degree of freedom trapped in the metastable vacuum, and

a JBD degree of freedom evolving in time (slowly in most cases). In the model of Kofman

and Linde, the JBD degree of freedom only couples to the inflaton mass term, while in

the model of La and Steinhardt, the JBD degree of freedom couples to both the potential

and kinetic terms for the inflaton in a prescribed way. In general the coupling of the JBD

degree of freedom to the inflaton field is model dependent [8,10]. Since the nucleation

rate A enters into the crucial parameter e, it is important to be able to calculate the

influence of the JBD field upon the decay rate of the false vacuum. In this paper, we

consider the most general couplings of the JBD field to the inflaton and calculate the

bubble nucleation rate per unit three-volume. We find that the generic situation is that

A acquires an ez'ponential dependence on the JBD field. This then allows for many more

possibilities in terms of the behaviour of e. For example, even if H(t) increases in time

(unlike the case in the original extended inflation scenario), e(t) = A(t)/H*(t) can still

increase [10] in time.

Let us start by considering theories of a JBD field • coupled to an inflaton field o"

via the following generic action:

s = fd% -¢,R +

- (1)

Here we have written the action in the Jordan Conformal Frame, where Newton's con-

in a form that resembles Jordan-Brans-Dicke, and the question of whether it is the gravity sector or the
scalar sector that one is modifying is a matter of taste.



stant G N is replaced by the JBD field ¢ in the curvature term. The field _r is the inflaton

field and its potential has a metastable (false-vacuum) minimum at tr -- _rFv.

The simplest coupling functions can be of the form

F(_')- (16z'GN¢) '_, G(<_) -- C16_'Gjv_) '_. (2)

To ensure that our theory reduces to general relativity in the appropriate limit, we require

that for • = ¢0 = 1/161rGN, F(_o) = G(_o) : 1.

We note that the standard formalisms (the Euclidean bounce method) for performing

these calculations developed by Coleman and Callan [16] (and generalized by Coleman

and DeLuccia to include classical gravity [17]) are not immediately applicable to the

problem at hand. In extended inflation models, the time evolution of JBD field • and its

non-trivial couplings to the inflaton cause the false vacuum to "roll" during the bounce,

thus presenting a problem more complicated than in standard false-vacuum tunneling.

As far as extended inflation theories are concerned, one cannot exagerate the importance

of understanding the mechanism of false-vacuum tunneling under such circumstances.

It is a very difficult task. Some work has been done toward this goal by Accetta and

Romanelli [18]. It may, however, be more useful to attempt to understand the tunnelling

problem in this system via a Haruiltonian formalism [19]. In this letter, however, we

want to elaborate on the method developed by us [13] which allows us to systematically

"freeze out" gravitational effects in the bounce, thus enabling us to arrive at approximate

expressions for the nucleation rate which reflect the time evolution of the JBD field _.

To implement our approximation, we go to the Einstein Conforrnal Frame. The reason

comes from the observation that in the Jordan conformal frame action [i.e., Eq. (1)], the

second term is not the complete kinetic term for ¢, since an integration by parts of the

first term will make a contribution to the _ kinetic term. Therefore, for semi-classical

calculations involving the JBD field, it is more appropriate (and often easier) to use
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the Einstein Conformal Frame, where the gravitational couplings are the standard ones.

Then we may transform back to the Jordan frame if we choose. Thus we perform the

following conformal transformation

(3)

where the overbars denote quantities in the Einstein conformal frame, and fl-_ = 167rGjv&.

We define a new field _b via the relation

with _0_ = (3 -'F2wl/16_rCN.

the Einstein frame becomes

S =

where

¢ -- ¢o ln(167rCN_/, (41

With these definitions, the action of Eq. (1) expressed in

w

R 1

/ d4z _ 16_rCN + 2 _a_8_b_v¢

1
+f(¢/¢o) - g(¢l¢o)y(,,)] . (5)

f(¢/¢o1 -- exp(-¢/¢0) F(_i, g(d//_bo) - exp(-2¢/¢o) O(_), (61

and • = _(¢/_b0) is understood. For the simple couplings of Eq. (2), f(¢) = exp[(n -

1/¢/¢o ] and g(¢1 = exp[(m - 1)¢/¢o].

The action written as above in the Einstein frame reveals that if we want to freeze

out gravitational effects, we must also freeze out the evolution of the ¢ field during the

bounce. This is due to the fact that we are taking the GN --* 0 limit and ¢o oc GN -_/2,

thus the second term has the same GN dependence as the first term. Treating ¢ as

constant also implies that • must be taken to be constant. This may be alarming since



we have to use explicitly the fact that both the scale factor and q_ are time dependent

to make our discussion relevant for inflation. However, we are saved by the observation

that the (imaginary-time) bounce configuration used in computing the tunneling action

is distinct from the (real-time) background metric and 3BD field configuration governing

the evolution of the Universe. Thus the latter can remain time dependent while we freeze

out the time evolution in qJ during the tunneling process [13].

Corrections to this approximation can also be considered. We expect, using the results

of bubble nucleation calculations in standard gravity as a guide, that our approximation

wiU be reliable when the effective Planck mass induced by the JBD field is much greater

than the mass scales associated with the _, tld& In theories where 6 increases with time,

the approximation wiU work best at late times.

The approximation discussed above yidds the following truncated action for the in-

flaton _r in the Euclidean frame:

where _ = exp(_/_0). We remind the reader that this might very well be considered

the starting point for extended inflation, without recourse to the Jordan-Brans-Dicke

action. In this case one must still ignore the evolution of _ in calculating the bounce.

Although this might very well be a good approximation, there is no systematic reason

for doing so unless the _ field is of gravitational origin, in which case it may safely be

ignored in the GN -4 0 limit as discussed above.

To calculate the bubble nucleation rate (per unit physical three volume)

= A exp(-B), (8)

we need to calculate the bounce action, B, and the prefactor, A [16].



If we rescale the coordinates to

_g(_)_== /-T6 == (9)

we can rewrite the action of Eq. (7)

_ f2(_) / _ rl ^. - 1
f'(_)

-- [_a o'a_o" + VCo')j So (10)s_ g(_) g(_)

where So is the Euclidean action of the standard theory (i.e., the action of Eq. (5) with

= 1). Clearly_ this implies that the bounce configuration _rB is related to the bounce

of the theory containing _B:

,,,,(=)= _,,(v/g(_)l/(_)=).

The bounce action is

(11)

[_= e=p(,H_o)], (n)

where B0 is the (_-independent) bounce action calculated for the theory with _ = 1

(_b = 0). The fact that the coupling of _b into the action of Eq. (7) can be factored out

by means of coordinate rescaling is essential in enabling us to carry out our calculation.

The prefactor A from Eq. (8)is given by [16]

det'[Si_(_B)]I-'/'
A= (C_,) _/_H _ (13/

Here, O'FV is the false-vaccum configuration, tr8 is the bounce solution, and det' indicates

that the functional determinant is to be evaluated in the subspace orthogonal to the four

translational zero modes. The G_, are normalization factors of the zero modes of the

operator S_(_B).

Performing the functional variation of the Euclidean action yields

det'[S_(trs)]]-1/=

idet'[-.f(_)O'+ g(_)V"(_rn)] I-'/'
= det[-f(_)a 2 + V"(trF¢)] I ' (14)
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To determine the _ dependence of the above expression, we observe that if _s(z) is

the eigenfunction of the operator __2 + V"(_) with eigenvalue O, then

[-f(_)o _+ gC_)v"C_)l_,C_/gC_)lf(_)_)= g(_)[-_ + v"c_)]_(_)

= gC_)o_,C_/gC_)lf(_).), (15)

i.e., @s(¢g(_)/f(_.)z) is the eigenfunction of the operator -f(_)8 2 + g(_)Y"(o'B) with

eigenvalue g(_)O. Since the primed determinant has four eigenvalues fewer than the

unprimed one, we have

ADET -_ {[g(_)]-4}-1/2 "ADET = g'(_)'ADET. (16)

The C_, are defined so that the properly normalized modes axe C_l/aa_,aB (# =

1,... ,4). Thus, C, = f d4z(O_,aB) _ (no sum over g implied), and for an O(4)-symmetric

bounce, the C_, are all equal. The _ dependence of Ct, can easily be found:

e. = ] _(0._B)_ =/(_)lg(_)

Hence, the nucleation rate in the Einstein frame is

_(i) =/_(_)Aexp(-B0/'(_)/g(_)).

(17)

(18)

Now we may find the nucleation rate in the Jordan frame. Recall that exp(¢/_b0) =

16a'GNq_, and that the nucleation rate in the Jordan frame is related to that in the

Einstein frame by

_ dP = dP _ = 12_4-_
- du_ _uvz:Yv_
= _,2f2C_,)A.exp(-Bo/2(_,)/g(_,))

= _Fa('_)exp{-BoF2(@)IG(_)}. (19)

and Bo are 6 independent and depend only upon the inflaton potential. B0 is dimen-

sionless, while .4 has mass dimension 4.
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For the simple power-law coupling functions in Eq. (2), we have

A = A(16=GN#) _" exp[-Bo(16_GN_) 2"-"_] (20)

In the original extended inflation model m = rt = 0, and in the Jordan frame the

nucleation rate is time independent, although it is time dependent in the Einstein frame

(as discussed in [13]). However, in dimensionally reduced theories, the generic form has m

and n different from zero [10]. We see from the above equation that if 2n-m # 0 the time

dependence of the nucleation probability can be ezponentially strong through the time

dependence of ¢, (or equivalently, _b). If 2n-m = 0 but n # 0, the nucleation probability

is still time dependent in the Jordan frame, and time dependent in the Einstein frame if

n#l.

For arbitrary functions F(_) and G(_), we can expect much richer time dependence

of the bubble nucleation rate.

To conclude, we have found that in generalized extended inflation theories, the bubble

nucleation rate acquires an explicit time dependence, even in the limit of freezing out

gravitational effects. The time dependence will be ezponentially strong in the generic case.

This remarkable feature of the theories encompassed by our model provides optimistic

prospects for the success of percolation, since the time dependence of the percolation

parameter e is enriched through the time dependence of the nucleation probability.
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